Mössbauer spectroscopic and x-ray diffraction studies of structural and magnetic properties of heat-treated „Ni0.5Zn0.5...Fe2O4 nanoparticles

نویسندگان

  • De-Ping Yang
  • Lindsey K. Lavoie
  • Yide Zhang
  • Zongtao Zhang
  • Shihui Ge
چکیده

Because of their high electrical resistivity and high magnetic permeability, nickel–zinc ferrites are among the best soft magnetic materials for high-frequency applications. In this work, a precursor of nanostructured (Ni0.5Zn0.5)Fe2O4 was obtained by a sol–gel method modified for large quantity production. Six heat-treated samples were produced by calcining the precursor for 3 h at 450, 500, 600, 650, 700, and 1100 °C, respectively. X-ray diffraction peak width data have been used to estimate the particle sizes of the calcined samples. Room-temperature and low-temperature Fe Mössbauer effect experiments allowed us to determine whether the heat-treated nanoparticles are crystalline or amorphous, whether there is a superparamagnetic phase, and which calcining temperature is optimum for obtaining a large magnetic hyperfine field and a homogeneous magnetic phase. Room-temperature Mössbauer spectra revealed that the precursor is paramagnetic, while the heat-treated samples have the ferrimagnetic phase. The samples heat treated at a calcining temperature of 650 °C or higher showed no residual paramagnetic phase, indicating that 650 °C is the threshold calcining temperature for homogeneous (Ni0.5Zn0.5)Fe2O4 nanoparticles. A comparison between low-temperature and room-temperature Mössbauer spectra demonstrated that the precursor is paramagnetic, whereas the heat-treated (500 °C) sample has a component that shows superparamagnet relaxation. © 2003 American Institute of Physics. @DOI: 10.1063/1.1540146#

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of cobalt on structural, microstructural and magnetic properties of magnesium-zinc ferrite nanoparticles

Mg0.5-xCoxZnFe2O4 ferrite nanostructures with various amounts of Co2+ substitution (x= 0, 0.05, 0.10, 0.15) were prepared using a simple and inexpensive sol-gel method sol-gel route. Structural, microstructural and magnetic properties of the prepared powders were investigated by x-ray diffraction (XRD), Fourier transform infrared (FT-IR), field emission- scanning electron microscopy (FE-SEM), X...

متن کامل

The Effect of Transition Metals Incorporation on the Structural and Magnetic Properties of Magnesium Oxide Nanoparticles

Pure and doped magnesium oxide nanoparticles were successfully synthesized employing a sol-gel process. The synthesized nanoparticles were characterized by thermal differential analysis, X-ray powder diffraction, transmission electron microscopy, scanning electron microscope, energy-dispersive X-ray spectroscopy, and vibrating sample magnetometer. X-ray diffraction patterns confirmed the crysta...

متن کامل

An Efficient Co-Precipitation Synthesis of BaZr1-xCoxO3 Nanoparticles: Structural, Optical and Magnetic Properties

In this study, BaZr1-xCoxO3 nanoparticles, x = 0.00, 0.04, 0.06, 0.08, 0.10 and 0.20, are synthesized through co-precipitation method. Therefore, structural, optical and magnetic properties have been investigated. The cubic perovskite structure is confirmed by X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopic measurements. The average crystallite size and micro strain ...

متن کامل

Study of magnetic and structural and optical properties of Zn doped Fe3O4 nanoparticles synthesized by co-precipitation method for biomedical application

Objective(s): This paper describes synthesizing of magnetic nanocomposite with co-precipitation method.   Materials and Methods: Magnetic ZnxFe3-xO4 nanoparticles with 0-14% zinc doping (x=0, 0.025, 0.05, 0.075, 0.1 and 0.125) were successfully synthesized by co-precipitation method. The prepared zinc-doped Fe3O4 nanoparticles were characterized by X-ray diffraction (XRD), transmission electron...

متن کامل

An investigation on synthesis and magnetic properties of nanoparticles of Cobalt Ferrite coated with SiO2

SiO2-coated Cobalt Ferrite (CoFe2O4) nanoparticles were obtained by the hydrolysis of tetraethylorthosilicate in the presence of CoFe2O4 nanoparticles in co-precipitation. The effects of SiO2coating on the magnetic properties of CoFe2O4 nanoparticles were investigated. The structural, morphological and magne...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003